Hierarchical networks, power laws, and neuronal avalanches.
نویسندگان
چکیده
We show that in networks with a hierarchical architecture, critical dynamical behaviors can emerge even when the underlying dynamical processes are not critical. This finding provides explicit insight into current studies of the brain's neuronal network showing power-law avalanches in neural recordings, and provides a theoretical justification of recent numerical findings. Our analysis shows how the hierarchical organization of a network can itself lead to power-law distributions of avalanche sizes and durations, scaling laws between anomalous exponents, and universal functions-even in the absence of self-organized criticality or critical points. This hierarchy-induced phenomenon is independent of, though can potentially operate in conjunction with, standard dynamical mechanisms for generating power laws.
منابع مشابه
Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws.
Scale-free fluctuations are ubiquitous in behavioral performance and neuronal activity. In time scales from seconds to hundreds of seconds, psychophysical dynamics and the amplitude fluctuations of neuronal oscillations are governed by power-law-form long-range temporal correlations (LRTCs). In millisecond time scales, neuronal activity comprises cascade-like neuronal avalanches that exhibit po...
متن کاملAvalanches in a Stochastic Model of Spiking Neurons
Neuronal avalanches are a form of spontaneous activity widely observed in cortical slices and other types of nervous tissue, both in vivo and in vitro. They are characterized by irregular, isolated population bursts when many neurons fire together, where the number of spikes per burst obeys a power law distribution. We simulate, using the Gillespie algorithm, a model of neuronal avalanches base...
متن کاملSequential associative memory with nonuniformity of the layer sizes.
Sequence retrieval has a fundamental importance in information processing by the brain, and has extensively been studied in neural network models. Most of the previous sequential associative memory embedded sequences of memory patterns have nearly equal sizes. It was recently shown that local cortical networks display many diverse yet repeatable precise temporal sequences of neuronal activities...
متن کاملUndersampled Critical Branching Processes on Small-World and Random Networks Fail to Reproduce the Statistics of Spike Avalanches
The power-law size distributions obtained experimentally for neuronal avalanches are an important evidence of criticality in the brain. This evidence is supported by the fact that a critical branching process exhibits the same exponent [Formula: see text]. Models at criticality have been employed to mimic avalanche propagation and explain the statistics observed experimentally. However, a cruci...
متن کاملSelf-Organized Supercriticality and Oscillations in Networks of Stochastic Spiking Neurons
Networks of stochastic spiking neurons are interesting models in the area of theoretical neuroscience, presenting both continuous and discontinuous phase transitions. Here, we study fully-connected networks analytically, numerically and by computational simulations. The neurons have dynamic gains that enable the network to converge to a stationary slightly supercritical state (self-organized su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chaos
دوره 23 1 شماره
صفحات -
تاریخ انتشار 2013